Pre_GI: SWBIT SVG BLASTN

Query: NC_012632:1212780 Sulfolobus islandicus M.16.27 chromosome, complete genome

Lineage: Sulfolobus islandicus; Sulfolobus; Sulfolobaceae; Sulfolobales; Crenarchaeota; Archaea

General Information: This strain was isolated from a hot spring on the Kamchatka Penninsula, in the Russian Far East. Hyperthermophilic acidophilic sulfur-metabolizing archeon. Sulfolobus islandicus is a thermo-acidophilic archeae commonly identified in hot, acidic sulfur springs. This organism can grow both chemoautotrophically, using sulfur or hydrogen sulfide, and heterotrophically. S. islandicus can play host to a number of plasmids and viruses which may be useful in developing tools for genetic analysis. In addition, Sulfolobus islandicus isolates from different areas in Russia, Iceland, and the United States have been shown to be genetically distinct from each other making this organism useful for comparative analysis.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_015978:113656 Lactobacillus sanfranciscensis TMW 1.1304 chromosome, complete

Lineage: Lactobacillus sanfranciscensis; Lactobacillus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This is the characteristic organism in wheat sourdough. They are commonly found in the oral, vaginal, and intestinal regions of many animals. They are important industrial microbes that contribute to the production of cheese, yogurt, and other products such as fermented milks, all stemming from the production of lactic acid, which inhibits the growth of other organisms as well as lowering the pH of the food product. Industrial production requires the use of starter cultures, which are carefully cultivated, created, and maintained, which produce specific end products during fermentation that impart flavor to the final product, as well as contributing important metabolic reactions, such as the breakdown of milk proteins during cheese production. The end product of fermentation, lactic acid, is also being used as a starter molecule for complex organic molecule syntheses.