Pre_GI: SWBIT SVG BLASTN

Query: NC_012581:5008749 Bacillus anthracis str. CDC 684 chromosome, complete genome

Lineage: Bacillus anthracis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This organism was the first to be shown to cause disease by Dr. Robert Koch, leading to the formulation of Koch's postulates, which were verified by Dr. Louis Pasteur (the organism, isolated from sick animals, was grown in the laboratory and then used to infect healthy animals and make them sick). This organism was also the first for which an attenuated strain was developed as a vaccine. Herbivorous animals become infected with the organism when they ingest spores from the soil whereas humans become infected when they come into contact with a contaminated animal. Anthrax is not transmitted due to person-to-person contact. The three forms of the disease reflect the sites of infection which include cutaneous (skin), pulmonary (lung), and intestinal. Pulmonary and intestinal infections are often fatal if left untreated. Spores are taken up by macrophages and become internalized into phagolysozomes (membranous compartment) whereupon germination initiates. Bacteria are released into the bloodstream once the infected macrophage lyses whereupon they rapidly multiply, spreading throughout the circulatory and lymphatic systems, a process that results in septic shock, respiratory distress and organ failure. The spores of this pathogen have been used as a terror weapon.

No Graph yet!

Subject: NC_009662:276287 Nitratiruptor sp. SB155-2, complete genome

Lineage: Nitratiruptor; Nitratiruptor; Nautiliaceae; Nautiliales; Proteobacteria; Bacteria

General Information: This strain was isolated from a deep-sea hydrothermal vent in the Iheya North field in the Mid-Okinawa Trough, Japan as part of a larger diversity study. This rod-shaped bacterium grows chemolithoautotrophically and can utilize a wide spectrum of electron donors and acceptors (i.e. hydrogen, sulfur compounds, nitrate and oxygen). It can occupy different ecological niches, and its metabolic versatility probably enables it to adapt to the geochemical variability in deep-sea hydrothermal environments.