Pre_GI: SWBIT SVG BLASTN

Query: NC_012563:4101000 Clostridium botulinum A2 str. Kyoto, complete genome

Lineage: Clostridium botulinum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain was isolated from a case of infant botulism in Kyoto, Japan in 1978. This organism produces one of the most potent and deadly neurotoxins known, a botulinum toxin that prevents the release of acetylcholine at the neuromuscular junction, thereby inhibiting muscle contraction and causing paralysis. In most cases the diseased person dies of asphyxiation as a result of paralysis of chest muscles involved in breathing. The spores are heat-resistant and can survive in inadequately heated, prepared, or processed foods. Spores germinate under favorable conditions (anaerobiosis and substrate-rich environment) and bacteria start propagating very rapidly, producing the toxin.Botulinum toxin, and C. botulinum cells, has been found in a wide variety of foods, including canned ones. Almost any food that has a high pH (above 4.6) can support growth of the bacterium. Honey is the most common vehicle for infection in infants. Food poisoning through C. botulinum is the most frequent type of infection caused by this bacterium. The wound botulism that occurs when C. botulinum infects an individual via an open wound is much rarer and is very similar to tetanus disease. There are several types of botulinum toxin known (type A through type F), all of them being neurotoxic polypeptides. The most common and widely distributed are strains and serovars of C. botulinum that produce type A toxin.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007722:55558 Erythrobacter litoralis HTCC2594, complete genome

Lineage: Erythrobacter litoralis; Erythrobacter; Erythrobacteraceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: This strain was collected from the Sargasso Sea at a depth of 10 meters. Phototrophic bacterium. Organisms in this aerobic phototrophic genus are found in marine environments. Members of this group produce bacteriochlorophyll a, which is normally found in anaerobic organisms. One theory to explain this is that the anoxygenic photosynthetic gene cluster was acquired by these organisms via lateral gene transfer. Although they require an organic carbon substrate for growth, they are able to supplement a significant fraction of their metabolic requirements with photosynthetically derviced energy. This species was isolated from a marine cyanobacterial mat. Although they require an organic carbon substrate for growth, they are able to supplement a significant fraction of their metabolic requirements with photosynthetically derviced energy. The presence of the carotenoids bacteriorubixanthinal and erythroxanthin sulfate give this organism a reddish color.