Pre_GI: SWBIT SVG BLASTN

Query: NC_012560:1564500 Azotobacter vinelandii DJ, complete genome

Lineage: Azotobacter vinelandii; Azotobacter; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This organism was first isolated from the soil in Vineland, New Jersey, although it is found worldwide. It is a large obligate aerobe that has one of the highest respiratory rates of any organism. Azotobacter vinelandii also produces a number of unusual nitrogenases which allow it to fix atmospheric nitrogen to ammonia, a compound it can then use as a nitrogen source. It protects the oxygen-sensitive nitrogenase enzymes through its high respiratory rate, which sequesters the nitrogenase complexes in an anoxic environment. This organism has a number of unusual characteristics. Under extreme environmental conditions, the cell will produce a cyst that is resistant to dessication and is surrounded by two capsular polysaccharide layers. This organism produces two industrially important polysaccharides, poly-beta-hydroxybutyrate (PHB) and alginate. PHB is a thermoplastic biopolymer, and alginate is used in the food industry. Alginate is also used by the pathogen Pseudomonas aeruginosa to infect the lungs of cystic fibrosis patients.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009720:3968101 Xanthobacter autotrophicus Py2, complete genome

Lineage: Xanthobacter autotrophicus; Xanthobacter; Xanthobacteraceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Alkene-degrading bacterium. Xanthobacter autotrophicus is a nitrogen-fixing methylotroph, commonly isolated from organic rich soil, sediment and water. This organism uses an alkene-specific monooxygenase to convert propene to epoxypropane. This monooxygenase is also able to catalyze the initial step in the cometabolism of chlorinated alkenes such as vinyl chloride and trichloroethene. The Xanthobacter autotrophicus alkene monooxygenase and other genes involved in alkene degradation are located on a 320 kb megaplasmid.