Pre_GI: SWBIT SVG BLASTN

Query: NC_012560:1564500 Azotobacter vinelandii DJ, complete genome

Lineage: Azotobacter vinelandii; Azotobacter; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This organism was first isolated from the soil in Vineland, New Jersey, although it is found worldwide. It is a large obligate aerobe that has one of the highest respiratory rates of any organism. Azotobacter vinelandii also produces a number of unusual nitrogenases which allow it to fix atmospheric nitrogen to ammonia, a compound it can then use as a nitrogen source. It protects the oxygen-sensitive nitrogenase enzymes through its high respiratory rate, which sequesters the nitrogenase complexes in an anoxic environment. This organism has a number of unusual characteristics. Under extreme environmental conditions, the cell will produce a cyst that is resistant to dessication and is surrounded by two capsular polysaccharide layers. This organism produces two industrially important polysaccharides, poly-beta-hydroxybutyrate (PHB) and alginate. PHB is a thermoplastic biopolymer, and alginate is used in the food industry. Alginate is also used by the pathogen Pseudomonas aeruginosa to infect the lungs of cystic fibrosis patients.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009138:1138917 Herminiimonas arsenicoxydans, complete genome

Lineage: Herminiimonas arsenicoxydans; Herminiimonas; Oxalobacteraceae; Burkholderiales; Proteobacteria; Bacteria

General Information: Herminiimonas arsenicoxydans was isolated from heavy metal contaminated sludge from an industrial water treatment plant. This organism has a number of mechanisms for metabolizing arsenic allowing it to effectively colonize arsenic-contaminated environments. A bacterium capable of oxidizing and reducing arsenic. This heterotrophic bacterium is capable of reducing and oxidizing arsenic with the objective of detoxification. Arsenic is both a product from natural sources and of human activities, and is widely distributed in the environment, essentially in 3 different oxidation states: As (-III) (arsine), As (+III) (arsenite) and As (+V) (arseniate). The ecology of this metalloid is strongly dependent on microbial transformations which affect the mobility and bioavailability as well as the toxicity of arsenic in the environment.