Pre_GI: SWBIT SVG BLASTN

Query: NC_012438:1514376 Sulfurihydrogenibium azorense Az-Fu1 chromosome, complete genome

Lineage: Sulfurihydrogenibium azorense; Sulfurihydrogenibium; Hydrogenothermaceae; Aquificales; Aquificae; Bacteria

General Information: This strain was isolated from a terrestrial hot spring in the Azores, where it was living at temperatures between 65 degrees C and 70 degrees C. Hydrogen-oxidizing thermophile. Sulfurihydrogenibium azorense is a thermophilic bacterium that is able to use hydrogen and sulfur compounds as electron donors. This organism is also able to use ferric iron and arsenate as electron acceptors. This is the first pure culture terrestrial member of the Aquificales group, isolated by dilution-to-extinction methods.

No Graph yet!

Subject: NC_006396:2625962 Haloarcula marismortui ATCC 43049 chromosome I, complete sequence

Lineage: Haloarcula marismortui; Haloarcula; Halobacteriaceae; Halobacteriales; Euryarchaeota; Archaea

General Information: This organism was isolated from the Dead Sea and will provide information on the proteins necessary for adaptation to a high salt environment. Halophilic archaeon. Halobacterial species are obligately halophilic microorganisms that have adapted to optimal growth under conditions of extremely high salinity 10 times that of sea water. They contain a correspondingly high concentration of salts internally and exhibit a variety of unusual and unique molecular characteristics. Since their discovery, extreme halophiles have been studied extensively by chemists, biochemists, microbiologists, and molecular biologists to define both molecular diversity and universal features of life. A notable list of early research milestones on halophiles includes the discovery of a cell envelope composed of an S-layer glycoprotein, archaeol ether lipids and purple membrane, and metabolic and biosynthetic processes operating at saturating salinities. These early discoveries established the value of investigations directed at extremophiles and set the stage for pioneering phylogenetic studies leading to the three-domain view of life and classification of Halobacterium as a member of the archaeal domain. This organism is also know as "Halobacterium of the Dead Sea". Growth occurs in 1.7-5.1 M NaCl with optimum salt concentration of 3.4-3.9 M NaCl. The cytosol of this organism is a supersaturated salt solution in which proteins are soluble and active. This halophile is chemoorganotrophic and able to use a wide variety of compounds as sole carbon and energy sources.