Pre_GI: SWBIT SVG BLASTN

Query: NC_012108:5273289 Desulfobacterium autotrophicum HRM2, complete genome

Lineage: Desulfobacterium autotrophicum; Desulfobacterium; Desulfobacteraceae; Desulfobacterales; Proteobacteria; Bacteria

General Information: It was isolated from a marine sediment in the Mediterranean sea near Venice, Italy. It is involved in the anaerobic mineralization of organic matter coming from the water column. Desulfobacterium autotrophicum is capable of growing litho-autotrophically with H2, CO2 and sulfate, but also by coupling sulfate reduction with the oxidation of fatty acids. This organism can transform tetra to dichlormethane.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008528:1265542 Oenococcus oeni PSU-1, complete genome

Lineage: Oenococcus oeni; Oenococcus; Leuconostocaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This strain was isolated at Penn State University, USA and is used commercially for malolactic fermentation in wines. Lactic acid bacterium used in wine production. Oenococcus oeni is another member of the lactic acid bacteria and it occurs naturally in marshes and similar environments. It carries out malolactic conversion during secondary fermentation in wine production which is the conversion of malic acid to lactic acid with a concomitant rise in pH, making the wine microbiologically stable and enhancing the sensory properties of the wine (aroma, flavor, and texture). The organism's high tolerance to sulfite and ethanol mean that it will be the predominant organism in the wine at the end of fermentation where it cleans up the remaining sugars and converts the bitter-tasting malic acid.