Query: NC_012029:11986 Halorubrum lacusprofundi ATCC 49239 chromosome 1, complete genome
Lineage: Halorubrum lacusprofundi; Halorubrum; Halobacteriaceae; Halobacteriales; Euryarchaeota; Archaea
General Information: Formerly Halobacterium lacusprofundi, this organism is an extremely halophilic archaeon isolated from Deep Lake, Antarctica. Extremely halophilic archaeon isolated from the Antarctic. Halorubrum lacusprofundi is a red pigmented halophilic archaeon which has been found in hypersaline marine enviornments. Originally thought to be a psychrophile, further research determined that the optimum temperature for growth for Halorubrum lacusprofundi was from 31 - 37 degrees C.
Subject: NC_007952:1293024 Burkholderia xenovorans LB400 chromosome 2, complete sequence
Lineage: Burkholderia xenovorans; Burkholderia; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria
General Information: Originally identified as Pseudomonas sp. LB400 that was found in contaminated soil in upstate New York, USA, this organism is now classified in the genus Burkholderia. Polychlorinated biphenyl-degrading bacterium. Member of the genus Burkholderia are versatile organisms that occupy a surprisingly wide range of ecological niches. These bacteria are exploited for biocontrol, bioremediation, and plant growth promotion purposes. Burkholderia xenovorans has been found on fungi, animals, and from human clinical isolates such as from cystic fibrosis (CF) patients. It may be tightly associated with white-rot fungus, as the degadation of lignin by the fungus results in aromatic compounds the bacterium can then degrade. This organism is exceptionally capable of degradation of polychlorinated biphenyls (PCBs), which are environmental pollutants, and thus it may play a role in bioremediation of polluted and toxic sites and is studied as a model bioremediator. PCBs can be utilized as the sole carbon and energy source by this organism. The pathways for degradation of PCBs have been extensively characterized at both the genetic and the molecular level and have become a model system for the bacterial breakdown of these very persistent environmental contaminants.