Pre_GI: SWBIT SVG BLASTN

Query: NC_011985:3282924 Agrobacterium radiobacter K84 chromosome 1, complete genome

Lineage: Agrobacterium tumefaciens; Agrobacterium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This strain has been developed for worldwide commercial use to control crown gall. This species is used commercially to control crown gall, a tumorogenic plant disease caused by the ubiquitous soil-borne pathogen Agrobacterium tumefaciens, which affects susceptible woody plants worldwide. The pathogen is responsible for nursery and orchard losses among stone fruit trees, grapes, apples, pears, nut trees, caneberries, clematis, hops, kiwifruit, persimmons, roses and many ornamental annuals, trees and shrubs. Infected plants are usually weakened and unproductive due to their damaged root system.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004337:3590323 Shigella flexneri 2a str. 301, complete genome

Lineage: Shigella flexneri; Shigella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain was isolated in 1984 from a patient in Beijing, China. It is similar to pathogenic Escherichia coli except for the more numerous insertion sequences and contains a virulence plasmid (pCP301). Causes enteric disease. Shigella This genus is named for the Japanese scientist (Shiga) who discovered them in the 1890s. They are closely related to the Escherichia group, and may be considered the same species. are human-specific pathogens that are transmitted via contaminated food and water and are the leading causes of endemic bacillary dysentery, and over 1 million deaths worldwide are attributed to them. The bacteria infect the epithelial lining of the colon, causing acute inflammation by entering the host cell cytoplasm and spreading intercellularly. are extremely virulent organisms that require very few cells in order to cause disease. Both the type III secretion system, which delivers effector molecules into the host cell, and some of the translocated effectors such as the invasion plasmid antigens (Ipas), are encoded on the plasmid. The bacterium produces a surface protein that localizes to one pole of the cell (IcsA) which binds to and promotes actin polymerization, resulting in movement of the bacterium through the cell cytoplasm, and eventually to neighboring cells, which results in inflammatory destruction of the mucosal lining. This organism, along with Shigella sonnei, is the major cause of shigellosis in industrialized countries and is responsible for endemic infections.