Pre_GI: SWBIT SVG BLASTN

Query: NC_011958:53426 Rhodobacter sphaeroides KD131 chromosome 2, complete genome

Lineage: Rhodobacter sphaeroides; Rhodobacter; Rhodobacteraceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: Bacteria belonging to the Rhodobacter group are metabolically versatile as they are able to grow using photosynthesis, chemosynthesis, and usually can grow under both anaerobic and aerobic conditions. The most extensively studied bacteria with regards to its photosynthetic capabilities which includes the structure, function and regulation of its photosynthetic membranes, its mechanisms of CO2 and nitrogen fixation, cytochrome diversity and its electron transport systems. It can grow aerobically and anaerobically in the light and anaerobically in the dark. It produces an intracytoplasmic membrane system consisting of membrane invaginations where the light harvesting complexes (LH1 and LH2) and the reaction center are synthesized. Furthermore, it has the ability to detoxify metal oxides and oxyanions and hence has a role in bioremediation.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009720:2143124 Xanthobacter autotrophicus Py2, complete genome

Lineage: Xanthobacter autotrophicus; Xanthobacter; Xanthobacteraceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Alkene-degrading bacterium. Xanthobacter autotrophicus is a nitrogen-fixing methylotroph, commonly isolated from organic rich soil, sediment and water. This organism uses an alkene-specific monooxygenase to convert propene to epoxypropane. This monooxygenase is also able to catalyze the initial step in the cometabolism of chlorinated alkenes such as vinyl chloride and trichloroethene. The Xanthobacter autotrophicus alkene monooxygenase and other genes involved in alkene degradation are located on a 320 kb megaplasmid.