Pre_GI: SWBIT SVG BLASTN

Query: NC_011898:426951 Clostridium cellulolyticum H10, complete genome

Lineage: Clostridium cellulolyticum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: A non-ruminal mesophilic cellulolytic bacterium originally isolated from decayed grass compost. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Clostridium cellulolyticum is a mesophilic cellulolytic bacterium. Cellulose-degradation by C. cellulolyticum has been extensively studied. The cellulolytic enzymes of this organism are bound to a protein scaffold in an extracellular multienzyme complex called a cellulosome.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_012108:5273289 Desulfobacterium autotrophicum HRM2, complete genome

Lineage: Desulfobacterium autotrophicum; Desulfobacterium; Desulfobacteraceae; Desulfobacterales; Proteobacteria; Bacteria

General Information: It was isolated from a marine sediment in the Mediterranean sea near Venice, Italy. It is involved in the anaerobic mineralization of organic matter coming from the water column. Desulfobacterium autotrophicum is capable of growing litho-autotrophically with H2, CO2 and sulfate, but also by coupling sulfate reduction with the oxidation of fatty acids. This organism can transform tetra to dichlormethane.