Pre_GI: SWBIT SVG BLASTN

Query: NC_011898:426951 Clostridium cellulolyticum H10, complete genome

Lineage: Clostridium cellulolyticum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: A non-ruminal mesophilic cellulolytic bacterium originally isolated from decayed grass compost. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Clostridium cellulolyticum is a mesophilic cellulolytic bacterium. Cellulose-degradation by C. cellulolyticum has been extensively studied. The cellulolytic enzymes of this organism are bound to a protein scaffold in an extracellular multienzyme complex called a cellulosome.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010125:955863 Gluconacetobacter diazotrophicus PAl 5, complete genome

Lineage: Gluconacetobacter diazotrophicus; Gluconacetobacter; Acetobacteraceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Gluconacetobacter diazotrophicus strain PAL5 (ATCC 49037) was isolated from sugarcane roots in Brazil and will be used for comparative analysis. Nitrogen-fixing plant symbiont. This acid-tolerant organism is endophytic and colonizes internal plant tissues, establishing a symbiotic relationship with its host. This bacterium has been found in sugarcane, coffee, rice, tea, and other plants. The nitrogen-fixation systems of the bacterium provide the plant with essential nitrogenous compounds while the plant provides a protected environment for the bacterium to grow in. Nitrogen-fixation is important for sugarcane production, and this organism can fix nitrogen even in the presence of nitrate.