Pre_GI: SWBIT SVG BLASTN

Query: NC_011898:874457 Clostridium cellulolyticum H10, complete genome

Lineage: Clostridium cellulolyticum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: A non-ruminal mesophilic cellulolytic bacterium originally isolated from decayed grass compost. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Clostridium cellulolyticum is a mesophilic cellulolytic bacterium. Cellulose-degradation by C. cellulolyticum has been extensively studied. The cellulolytic enzymes of this organism are bound to a protein scaffold in an extracellular multienzyme complex called a cellulosome.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009718:1207360 Fervidobacterium nodosum Rt17-B1, complete genome

Lineage: Fervidobacterium nodosum; Fervidobacterium; Thermotogaceae; Thermotogales; Thermotogae; Bacteria

General Information: Fervidobacterium nodosum is a thermophilic, Gram-negative, motile, non-sporulating, glycolytic, obligately anaerobic rod that exists singly, in pairs or in chains. Fervidobacterium nodosum was isolated from a hot spring in New Zealand. Its optimal growth temperature is 65 to 70 degrees Celsius. The cellular morphology of this organism, a member of the Thermotogales, is characterized by a terminal spherical extension of the cell envelope.