Pre_GI: SWBIT SVG BLASTN

Query: NC_011896:2240990 Mycobacterium leprae Br4923, complete genome

Lineage: Mycobacterium leprae; Mycobacterium; Mycobacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This strain was isolated from a human skin biopsy in Brazil, and passaged in nude mice and armadillos. The bacterium is a close relative of M. tuberculosis. However, compared to the latter, the genome of M. leprae is smaller due to reductive genome evolution, with many important metabolic activities including siderophore production, part of the oxidative chain, most of the microaerophilic and anaerobic respiratory chains, and numerous catabolic systems and their regulatory circuits eliminated due to extensive recombination events between dispersed repetitive sequences. It is evident that this species has undergone massive genome reduction over time as a result of its parasitic nature, discarding more than half its genes and rendering it the most striking example of genome reduction in a microbial pathogen.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_020134:2832857 Clostridium stercorarium subsp. stercorarium DSM 8532, complete

Lineage: Clostridium stercorarium; Clostridium; unclassified Ruminococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: Lignocellulosic biomass has great potential as an abundant and renewable source of fermentable sugars through enzymic saccharification. Clostridium stercorarium is a catabolically versatile bacterium producing a wide range of hydrolases for degradation of biomass. Together with Clostridium thermocellum, Clostridium aldrichii and other cellulose degraders, it forms group I of the clostridia. It is moderately thermophilic, with an optimum growth temperature of 65 degrees C, and has repeatedly been isolated from self-heated compost. The two-component cellulase system of C. stercorarium has been investigated thoroughly. Due to its ability to utilize the various polysaccharides present in biomass it is especially suited for the fermentation of hemicellulose to organic solvents. Some isolates have been used in Japan in a single-step ethanol-fermenting pilot-process with lignocellulosic biomass as substrate.