Pre_GI: SWBIT SVG BLASTN

Query: NC_011883:2031222 Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774,

Lineage: Desulfovibrio desulfuricans; Desulfovibrio; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774 was isolated from the rumen of a sheep. D. desulfuricans reduces sulfate to sulfide found in soil, freshwater, saltwater and the intestinal tract of animals. This organism grows anaerobically and utilizes a wide variety of electron acceptors, including sulfate, sulfur, nitrate, and nitrite, as well as others. The nitrate reduction pathway is not expressed while sulfate is available. Alternatively, the sulfate reduction pathway is constitutively expressed when the cells are growing with nitrate reduction. A number of toxic metals are reduced, including uranium (VI), chromium (VI) and iron (III), making this organism of interest as bioremediator. Metal corrosion, a problem that is partly the result of the collective activity of this bacterium, results in billions of dollars in losses each year to the petroleum industry. This organism is responsible for the production of poisonous hydrogen sulfide gas in marine sediments and in terrestrial environments such as drilling sites for petroleum products.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008011:663958 Lawsonia intracellularis PHE/MN1-00, complete genome

Lineage: Lawsonia intracellularis; Lawsonia; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: Lawsonia intracellularis PHE/MN1-00 was isolated from intestinal mucosal lesions in pigs that had proliferative enteropathy (PE). When introduced into health pigs, this organism produced the clinical and histological signs of PE. Causative agent for proliferative enteropathy in swine. This organism causes proliferative enteropathy (ileitis) in swine and other domesticated animals resulting in severe losses each year. This obligate intracellular pathogen infects the mucosa of the lower intestinal tract by initially infecting crypt cells, which are precursors that normally grow and divide in order to replace the epithelial cells. Once infection occurs, the crypt cells are stimulated to grow and divide abnormally, resulting in the proliferative phenotype. In severe cases of the disease the entire bowel can become affected and persist for up to 40 days, greatly affecting the host animal.