Pre_GI: SWBIT SVG BLASTN

Query: NC_011835:625472 Bifidobacterium animalis subsp. lactis AD011 chromosome, complete

Lineage: Bifidobacterium animalis; Bifidobacterium; Bifidobacteriaceae; Bifidobacteriales; Actinobacteria; Bacteria

General Information: Isolated from the fecal sample of a healthy, breast-fed infant. Normal gut bacterium. Representatives of this genus naturally colonize the human gastrointestinal tract (GIT) and are important for establishing and maintaining homeostasis of the intestinal ecosystem to allow for normal digestion. Their presence has been associated with beneficial health effects, such as prevention of diarrhea, amelioration of lactose intolerance, or immunomodulation. The stabilizing effect on GIT microflora is attributed to the capacity of bifidobacteria to produce bacteriocins, which are bacteriostatic agents with a broad spectrum of action, and to their pH-reducing activity. Most of the ~30 known species of bifidobacteria have been isolated from the mammalian GIT, and some from the vaginal and oral cavity. All are obligate anaerobes belonging to the Actinomycetales, branch of Gram-positive bacteria with high GC content that also includes Corynebacteria, Mycobacteria, and Streptomycetes.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008618:1526392 Bifidobacterium adolescentis ATCC 15703, complete genome

Lineage: Bifidobacterium adolescentis; Bifidobacterium; Bifidobacteriaceae; Bifidobacteriales; Actinobacteria; Bacteria

General Information: Human gut bacterium. This species is a normal inhabitant of the healthy human gut. Newborns, especially those that are breast-fed, are colonized with Bifidobacteria within days after birth. This species was first isolated from the feces of a breast-fed infant. In one comprehensive 16S rDNA sequence-based enumeration of the colonic microbiota of three healthy adult humans it represents, on average, 0.008% of all 16S rDNA sequences and 4.302% of the sequences in its division (Eckburg et. They are saccharolytic organisms that produce acetic and lactic acids without generation of CO2, except during degradation of gluconate.