Pre_GI: SWBIT SVG BLASTN

Query: NC_011769:3434744 Desulfovibrio vulgaris str. 'Miyazaki F', complete genome

Lineage: Desulfovibrio vulgaris; Desulfovibrio; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: Desulfovibrio vulgaris str. 'Miyazaki F' has one of the best characterized nickel/iron hydrogenases. A sulfate reducing bacterium. These organisms typically grow anaerobically, although some can tolerate oxygen, and they utilize a wide variety of electron acceptors, including sulfate, sulfur, nitrate, and nitrite. A number of toxic metals are reduced, including uranium (VI), chromium (VI) and iron (III), making these organisms of interest as bioremediators. Metal corrosion, a problem that is partly the result of the collective activity of these bacteria, produces billions of dollars in losses each year to the petroleum industry. These organisms are also responsible for the production of poisonous hydrogen sulfide gas in marine sediments and in terrestrial environments such as drilling sites for petroleum products. This species is a sulfate reducer commonly found in a variety of soil and aquatic environments.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007761:241900 Rhizobium etli CFN 42, complete genome

Lineage: Rhizobium etli; Rhizobium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: It is a nitrogen-fixing symbiotic bacteria that interacts with the root of the common bean plant Phaseolus vulgaris. P. etli and its relation to other nitrogen/fixing symbionts has been well studied. The genomic sequence will provide information on the process of symbiosis, on the genetic systems that allow the survival and adaptations of this bacteria to the soil, and on the evolutionary relationship and the symbiosis origin of this organism.