Pre_GI: SWBIT SVG BLASTN

Query: NC_011768:4571869 Desulfatibacillum alkenivorans AK-01, complete genome

Lineage: Desulfatibacillum alkenivorans; Desulfatibacillum; Desulfobacteraceae; Desulfobacterales; Proteobacteria; Bacteria

General Information: Desulfatibacillum alkenivorans AK-01 was isolated from sediment from the Arthur Kill, NJ/NY waterway, USA. This site has a history of contamination from petrochemical industry and strain AK-01 is able to degrade 13 to 18 carbon alkanes. Desulfatibacillum alkenivorans is an alkene-degrading, sulfate-reducing bacterium isolated from estuarine sediment. It activates alkanes via subterminal addition of the alkane to fumarate.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_003305:1297785 Agrobacterium tumefaciens str. C58 chromosome linear, complete

Lineage: Agrobacterium tumefaciens; Agrobacterium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Gram-negative soil bacterium. This is the most widely studied species in the genus. Strains of Agrobacterium are classified in three biovars based on their utilisation of different carbohydrates and other biochemical tests. The differences between biovars are determined by genes on the single circle of chromosomal DNA. Biovar differences are not particularly relevant to the pathogenicity of A. tumefaciens, except in one respect: biovar 3 is found worldwide as the pathogen of gravevines. This species causes crown gall disease of a wide range of dicotyledonous (broad-leaved) plants, especially members of the rose family such as apple, pear, peach, cherry, almond, raspberry and roses. Because of the way that it infects other organisms, this bacterium has been used as a tool in plant breeding. Any desired genes, such as insecticidal toxin genes or herbicide-resistance genes, can be engineered into the bacterial DNA, and then inserted into the plant genome. This process shortens the conventional plant breeding process, and allows entirely new (non-plant) genes to be engineered into crops.