Pre_GI: SWBIT SVG BLASTN

Query: NC_011593:1163000 Bifidobacterium longum subsp. infantis ATCC 15697 chromosome,

Lineage: Bifidobacterium longum; Bifidobacterium; Bifidobacteriaceae; Bifidobacteriales; Actinobacteria; Bacteria

General Information: This strain was isolated from human infant feces. Representatives of this genus naturally colonize the human gastrointestinal tract (GIT) and are important for establishing and maintaining homeostasis of the intestinal ecosystem to allow for normal digestion. Their presence has been associated with beneficial health effects, such as prevention of diarrhea, amelioration of lactose intolerance, or immunomodulation. The stabilizing effect on GIT microflora is attributed to the capacity of bifidobacteria to produce bacteriocins, which are bacteriostatic agents with a broad spectrum of action, and to their pH-reducing activity. Most of the ~30 known species of bifidobacteria have been isolated from the mammalian GIT, and some from the vaginal and oral cavity. All are obligate anaerobes belonging to the Actinomycetales, branch of Gram-positive bacteria with high GC content that also includes Corynebacteria, Mycobacteria, and Streptomycetes. Bifidobacterium longum is found in adult humans and formula fed infants as a normal component of gut flora.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009142:5519208 Saccharopolyspora erythraea NRRL 2338, complete genome

Lineage: Saccharopolyspora erythraea; Saccharopolyspora; Pseudonocardiaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Source of the antibiotic erythromycin. Saccharopolyspora erythraea is the soil bacterium that produces the industrially important antibiotic erythromycin A. Erythromycin is a clinically important and potent macrolide antibiotic. It is used to treat infections caused by several prokaryotic pathogens such as Streptococcus, Staphylococcus, Mycoplasma, Ureaplasma, Chlamydia and Legionella. Production of this antibiotic is lower than others in the same class, such as penicillin or cephalosporin, which has led to the development of a genetic system to attempt to enhance the production of erythromycin.