Pre_GI: SWBIT SVG BLASTN

Query: NC_011415:11381 Escherichia coli SE11 chromosome, complete genome

Lineage: Escherichia coli; Escherichia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism was named for its discoverer, Theodore Escherich, and is one of the premier model organisms used in the study of bacterial genetics, physiology, and biochemistry. This enteric organism is typically present in the lower intestine of humans, where it is the dominant facultative anaerobe present, but it is only one minor constituent of the complete intestinal microflora. E. coli, is capable of causing various diseases in its host, especially when they acquire virulence traits. E. coli can cause urinary tract infections, neonatal meningitis, and many different intestinal diseases, usually by attaching to the host cell and introducing toxins that disrupt normal cellular processes.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_011901:3363500 Thioalkalivibrio sulfidophilus HL-EbGr7 chromosome, complete

Lineage: Thioalkalivibrio sulfidophilus; Thioalkalivibrio; Ectothiorhodospiraceae; Chromatiales; Proteobacteria; Bacteria

General Information: Obligately chemolithoautotrophic, haloalkaliphilic, mesophilic, microaerophilic and sulfur-oxidizing bacterium. Uses CO2 as a carbon source and reduced inorganic sulfur compounds as an energy source. Utilizes ammonium and urea, but not nitrate or nitrite, as a N-source. Isolated from a full-scale Thiopaq bioreactor in the Netherlands used to remove H2S from biogas. Thioalkalivibrio species are commonly isolated from soda lakes and tend to dominate the microbial community of hypersaline soda lakes. These organisms have a pH optimum of 10 and are able to oxidize hydrogen sulfide to elemental sulfur. Thioalkalivibrio species have also been isolated from sulfide oxidizing bioreactors which remove sulfide from refinery and natural gas.