Query: NC_011374:325507 Ureaplasma urealyticum serovar 10 str. ATCC 33699 chromosome,
Lineage: Ureaplasma urealyticum; Ureaplasma; Mycoplasmataceae; Mycoplasmatales; Tenericutes; Bacteria
General Information: Causes a wide range of infections of the urogenital or respiratory tracts. Ureaplasma urealyticum is part of the normal flora of the human urogenital tract. This organism, however, can cause urethritis and has been associated with spontaneous abortion, premature birth, meningitis, and a severe respiratory disease of premature infants. U. urealyticum strains exhibit antigenic heterogeneity. Isolates obtained from human urogenital tract have been classified into 14 recognized serovars which show no serological cross-reactivity with ureaplasmas from other hosts and uniquely express human immuoglobulin A1 protease activity.
Subject: NC_018870:1417851 Thermacetogenium phaeum DSM 12270 chromosome, complete genome
Lineage: Thermacetogenium phaeum; Thermacetogenium; Thermoanaerobacteraceae; Thermoanaerobacterales; Firmicutes; Bacteria
General Information: Nitrogen fixation. Thermophilic strictly anaerobic bacterium oxidizing acetate to CO2 in syntrophic association with a methanogenic partner. Capable of growing with various substrates such as alcohols and methylated nitrogen compounds, and to reduce sulfate in the presence of acetate. Isolated from sludge of an anaerobic digester run at 58 degrees C. Thermacetogenium phaeum is a strictly anaerobic, homoacetogenic bacterium. It is exceptional because it can use the homoacetogenic Wood-Ljungdahl (CO- dehydrogenase) pathway both for acetate formation and acetate oxidation. Acetate oxidation is possible only in syntrophic cooperation with a methanogenic partner which maintains a low hydrogen and/or formate concentration in the coculture. With this, the bacterium operates close to the thermodynamic equilibrium of substrate conversion, similar to other syntrophically fermenting bacteria such as Syntrophomonas wolfei the genomes of which have been sequenced as well in the recent past.