Pre_GI: SWBIT SVG BLASTN

Query: NC_011094:688626 Salmonella enterica subsp. enterica serovar Schwarzengrund str

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This serovar is the predominant cause of Salmonellosis in Southeast Asia, a major source of imported food products to the USA. It was also the cause of the first recognized outbreak of fluoroquinolone-resistant salmonellosis in the USA. Recent reports suggest that high-level fluoroquinolone resistance is emerging in S. Schwarzengrund in different parts of the world. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_012779:2586175 Edwardsiella ictaluri 93-146, complete genome

Lineage: Edwardsiella ictaluri; Edwardsiella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Edwardsiella ictaluri is the causative agent of enteric septicemia in catfish (ESC), an economically significant disease of farm-raised catfish. The acute form of ESC causes bacterial septicemia (proliferation of bacteria in the blood) which rapidly leads to death. The chronic form of this disease causes a characteristic head lesion, and may also proceed to septicemia and death. Two plasmids, which are consistently present in Edwardsiella ictaluri isolates, have been sequenced. Both plasmids contain genes for the type III secretory system, which is involved in translocating pathogenicity proteins into the eukaryotic cell.