Pre_GI: SWBIT SVG BLASTN

Query: NC_011083:862901 Salmonella enterica subsp. enterica serovar Heidelberg str. SL476,

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This is a multidrug resistant strain. Salmonella enterica subsp. enterica serovar Heidelberg is one of the more common serovars causing disease in the USA. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_020207:2240115 Enterococcus faecium NRRL B-2354, complete genome

Lineage: Enterococcus faecium; Enterococcus; Enterococcaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This genera consists of organisms typically found in the intestines of mammals, although through fecal contamination they can appear in sewage, soil, and water. They cause a number of infections that are becoming increasingly a problem due to the number of antibiotic resistance mechanisms these organisms have picked up. Both Enterococcus faecalis and Enterococcus faecium cause similar diseases in humans, and are mainly distinguished by their metabolic capabilities. This opportunistic pathogen causes a range of infections similar to those observed with Enterococcus faecalis, including urinary tract infections, bacteremia (bacteria in the blood), and infective endocarditis (inflammation of the membrane surrounding the heart). Hospital-acquired infections from this organism are on the rise due to the emergence of antiobiotic resistance strains and has led to the rise of vancomycin-resistant Staphylococcus aureus strains due to the horizontal transfer of Enterococcus antibiotic resistance genes. Little is known about the virulence mechanisms in this organism, but the genome does encode an esp gene for the surface adhesin. Vancomycin resistant isolates are more typically Enterococcus faecium than Enterococcus faecalis.