Pre_GI: SWBIT SVG BLASTN

Query: NC_011071:572346 Stenotrophomonas maltophilia R551-3, complete genome

Lineage: Stenotrophomonas maltophilia; Stenotrophomonas; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: Stenotrophomonas maltophilia R551-3 was isolated from the poplar Populus trichocarpa x deltoides cv. "Hoogvorst" and is the second most common endophytic bacteria in poplar. Endophytic bacteria have been shown to increase plant growth or health but providing growth factors or nutrients and in aiding the degradation of toxic compounds. This species is an uncommon but serious source of infection in patients with breathing tubes such as endotracheal or tracheostomy tubes, or with chronically indwelling urinary catheters. Although the organism can colonize the devices without causing an infection, under certain conditions it can cause pneumonia, urinary tract infections, or an infection of the blood. This organism can also cause infection in immunocompromised patients. It has resistance to many commonly used antibiotics and therefore is often difficult to eradicate. Most strains are resistant to co-trimoxazole.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_014034:152264 Rhodobacter capsulatus SB1003 chromosome, complete genome

Lineage: Rhodobacter capsulatus; Rhodobacter; Rhodobacteraceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: This strain is a derivative strain isolated in the laboratory of Barry Marrs from the classical progenitor strain B10. It is rifampicin-resistant, produces GTA, and is capable of growing under high illumination (resistant to photooxidative killing). Bacteria belonging to the Rhodobacter group are metabolically versatile as they are able to use photosynthesis and usually can grow under both anaerobic and aerobic conditions. This organism is a facultatively phototrophic purple non-sulfur bacterium and the type species of the Rhodobacter group. The colony's color depends largely on the amount of oxygen present in its environment. While it is able to produce cellular energy in a number of different ways, it can rely on anoxygenic photosynthesis under anaerobic conditions in the presence of light. Some strains produce the Gene Transfer Element (GTA), a pro-phage particle capable of transferring genetic material between strains.