Pre_GI: SWBIT SVG BLASTN

Query: NC_011059:670345 Prosthecochloris aestuarii DSM 271, complete genome

Lineage: Prosthecochloris aestuarii; Prosthecochloris; Chlorobiaceae; Chlorobiales; Chlorobi; Bacteria

General Information: This species is a green sulfur bacterium which forms sedimentary biofilm layers. It has been shown to be associated with coral killed by Black-Band Disease (BBD) a microbial infection of larger coral species. This is a concern for reef conservationists as the larger species are responsible for coral scaffolds, and their reduction by disease would have considerable impact on the reef structure. While there is currently no cause-and-effect link between Prosthecochloris aestuarii and BBD, the species was found on coral which was killed by the disease and was not found on healthy coral or in the surrounding seawater.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007385:157516 Shigella sonnei Ss046 plasmid pSS_046, complete sequence

Lineage: Shigella sonnei; Shigella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is an isolate from an epidemic in China in the 1950s. A leading cause of dysentery. This genus is named for the Japanese scientist (Shiga) who first discovered these organisms in the 1890s. They are closely related to the Escherichia group, and may be considered the same species. These organisms are human-specific pathogens that are transmitted via contaminated food and water and are the leading causes of endemic bacillary dysentery, causing over 160 million cases of infection and 1 million deaths yearly worldwide. The bacteria infect the epithelial lining of the colon, causing acute inflammation by entering the host cell cytoplasm and spreading intercellularly. This extremely virulent organisms that can cause an active infection after a very low exposure. Both the type III secretion system, which delivers effector molecules into the host cell, and some of the translocated effectors such as the invasion plasmid antigens (Ipas), are encoded on the plasmid. The bacterium produces a surface protein that localizes to one pole of the cell (IcsA) which binds to and promotes actin polymerization, resulting in movement of the bacterium through the cell cytoplasm, and eventually to neighboring cells, which results in inflammatory destruction of the mucosal lining. This organism is the leading cause of dysentery in industrialized countries. The disease is usually less severe than other types of Shigella, causing mild diarrhea and dehydration.