Pre_GI: SWBIT SVG BLASTN

Query: NC_011004:5520771 Rhodopseudomonas palustris TIE-1, complete genome

Lineage: Rhodopseudomonas palustris; Rhodopseudomonas; Bradyrhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This strain was isolated from an iron-rich microbial mat from School Street Marsh in Woods Hole, MA, USA. It grows photoautotrophically with Fe(II), H2, or thiosulfate as the electron donor, photoheterotrophically with a variety of organic carbon sources and chemoheterotrophically in the dark. This organism has a diverse metabolism and is capable of growth using light, inorganic, or organic compounds as energy sources and carbon dioxide or organic compounds as carbon sources. Commonly found in soil and water environments this bacterium is also capable of degrading a wide range of toxic organic compounds, and may be of use in bioremediation of polluted sites. The bacterium undergoes differentiation to produce a stalked nonmotile cell and a motile flagellated cell. In the presence of light, this bacterium produces a number of intracellular membranous vesicles to house the photosynthetic reaction centers.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_012803:1552122 Micrococcus luteus NCTC 2665, complete genome

Lineage: Micrococcus luteus; Micrococcus; Micrococcaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Temp: Mesophile; Habitat: Soil. Micrococcus luteus NCTC 2665 has potential in bioremediation due to its ability to sequester metals (i.e. gold and strontium), and it is being used for gold concentration from low-abundance ores. Micrococcus luteus was originally isolated by Alexander Fleming in 1929 as Micrococcus lysodeikticus. This organism can be found in many environments including soil, water, animals, and dairy products. Micrococcus luteus is able to survive in the environment for long periods and has been isolated from inclusions in amber.