Pre_GI: SWBIT SVG BLASTN

Query: NC_010725:750911 Methylobacterium populi BJ001, complete genome

Lineage: Methylobacterium populi; Methylobacterium; Methylobacteriaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This species was isolated from tissue cultures of Populus, the Poplar tree. Colonies are pink to red, and the red pigment is water insoluble. Species of the genus Methylobacterium are strictly aerobic, facultatively methylotrophic, Gram-negative, rod-shaped bacteria that are able to grow on one-carbon compounds (e.g. methanol or methylamine), as well as on a variety of C2, C3 and C4 substrates. Only the type species, Methylobacterium organophilum, has been shown to use methane as the sole source of carbon and energy. Members of the genus are distributed in a wide variety of natural and man-made environments, including soil, air, dust, fresh- and marine water and sediments, water supplies, bathrooms, air-conditioning systems and masonry, and some are opportunistic human pathogens.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_006677:1255079 Gluconobacter oxydans 621H, complete genome

Lineage: Gluconobacter oxydans; Gluconobacter; Acetobacteraceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Industrially useful bacterium. Gluconobacter oxydans is a member of the Acetobacteraceae family within the alpha proteobacteria and can be isolated from flowers, fruits, and fermented beverages. This organism uses membrane-associated dehydrogenases to incompletely oxidize a wide variety of carbohydrates and alcohols. Oxidation occurs in the periplasm with the products being released into the medium via outer membrane porins and the electrons entering the electron transport chain. Able to oxidize large amounts of substrates, making it useful for industrial purposes. Among other applications, it has been used to produce 2-ketogluconic for iso-ascorbic acid production, 5-ketogluconic acid from glucose for tartaric acid production, and L-sorbose from sorbitol for vitamin C synthesis.