Pre_GI: SWBIT SVG BLASTN

Query: NC_010717:4851000 Xanthomonas oryzae pv. oryzae PXO99A, complete genome

Lineage: Xanthomonas oryzae; Xanthomonas; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: This strain is a representative strain of race 6 isolated in the Philippines. This plant pathogen affects rice plants by causing leaf blight, a major problem in Asian countries where rice production occurs on an industrial scale. This organism enters the xylem and spreads throughout the vascular tissue of the plant, which results in wilting of the plant, or to leaf blight if the infection occurs later in development. This genus consists of plant-specific yellow-pigmented microbes, some of which are economically important phytopathogens that devastate crops such as citrus plants, rice, beans, grape, and cotton. These organisms are almost exclusively found associated with their plant hosts and are not found free in the soil. Xanthomonas oryzae contains two pathovars which cause enconomically significant diseases in rice. Xanthomonas oryzae pathovar oryzae causes bacterial leaf blight which is one of the most serious diseases of rice. This disease is common in temperate and tropical areas and can cause significant crop loss.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_012881:3727150 Desulfovibrio salexigens DSM 2638, complete genome

Lineage: Desulfovibrio salexigens; Desulfovibrio; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: Isolation: mud in British Guyana; Temp: Mesophile; Temp: 37 C; Habitat: Mud. Desulfovibrio are sulfate-reducing bacteria which reduce sulfate to sulfide found in soil, freshwater, saltwater and the intestinal tract of animals. These organisms typically grow anaerobically, although some can tolerate oxygen, and they utilize a wide variety of electron acceptors, including sulfate, sulfur, nitrate, and nitrite, as well as others. A number of toxic metals are reduced, including uranium (VI), chromium (VI) and iron (III), making these organisms of interest as bioremediators. These organisms are responsible for the production of poisonous hydrogen sulfide gas in marine sediments and in terrestrial environments such as drilling sites for petroleum products.