Pre_GI: SWBIT SVG BLASTN

Query: NC_010628:7128951 Nostoc punctiforme PCC 73102, complete genome

Lineage: Nostoc punctiforme; Nostoc; Nostocaceae; Nostocales; Cyanobacteria; Bacteria

General Information: The strain was isolated from a symbiotic association with the gymnosperm cycad Macrozamia sp. It typically grows in freshwater habitats. This genera of cyanobacteria are typically terrestrially-associated and are especially found in limestone or nutrient-poor soils. They are very similar to Anabaena spp. and historically they have been distinguished on the basis of morphological and life cycle characteristics. Nostoc spp. can grow heterotrophically or photoheterotrophically, and form heterocysts for nitrogen fixation. This organism can form nitrogen-fixing symbiotic relationships with plants and fungi such as the bryophyte Anthoceros punctatus. The relationship is relatively simple as compared to the Rhizobial symbiotic relationship. In the presence of the plant, hormogonia (short motile filaments) infect the plant, and then form long heterocyst-containing (nitrogen-fixing differentiated bacterial cells) filaments. The bacterial cell receives carbon sources in exchange for fixed nitrogen.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007577:1458657 Prochlorococcus marinus str. MIT 9312, complete genome

Lineage: Prochlorococcus marinus; Prochlorococcus; Prochlorococcaceae; Prochlorales; Cyanobacteria; Bacteria

General Information: This strain was isolated by flow cytometry from water collected from the Gulf Stream in the north Atlantic Ocean. Marine cyanobacterium. This non-motile bacterium is a free-living marine organism that is one of the most abundant, as well as the smallest, on earth, and contributes heavily to carbon cycling in the marine environment. This cyanobacterium grows in areas of nitrogen and phosphorus limitation and is unique in that it utilizes divinyl chlorophyll a/b proteins as light-harvesting systems instead of phycobiliproteins. These pigments allow harvesting of light energy from blue wavelengths at low light intensity.