Pre_GI: SWBIT SVG BLASTN

Query: NC_010611:3381500 Acinetobacter baumannii ACICU, complete genome

Lineage: Acinetobacter baumannii; Acinetobacter; Moraxellaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: Acinetobacter baumannii strain ACICU (also called H34) was isolated from an outbreak in an intensive care unit in Rome, Italy. This bacterium is commonly isolated from the hospital environment and hospitalized patients. It is an aquatic organism, and is often cultured from liquid medical samples such as respiratory secretions, wounds, and urine. Acinetobacter also colonizes irrigating solutions and intravenous solutions. Although it has low virulence, it is capable of causing infection. Most isolates recovered from patients represent colonization rather than infection. When infections do occur, they usually occur in the blood, or in organs with a high fluid content, such as the lungs or urinary tract.Infections by this organism are becoming increasingly problematic due to the high number of resistance genes found in clinical isolates. Some strains are now resistant to all known antibiotics. Most of these genes appear to have been transferred horizontally from other organisms.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004545:499709 Buchnera aphidicola str. Bp (Baizongia pistaciae), complete genome

Lineage: Buchnera aphidicola; Buchnera; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism is found in the aphid Baizongia pistaciae. Aphid endosymbiont. It is believed that the Buchnera provide the essential nutrients the host lacks. Besides a nutritional co-dependence, due to a co-existence of millions of years, Buchnera have lost the ability to produce cell surface components such as lipopolysaccharides. This makes for an obligate endosymbiont relationship between host and Buchnera. Buchnera are prokaryotic cells which belong to the gamma-Proteobacteria, closely related to the Enterobacteriaceae family. Phylogenetic studies using 16S rRNA indicate that the symbiotic relationship was established around 200-250 million years ago. Since Buchnera are closely related to Escherichia coli and Haemophilus influenzae, comparative genomic studies can shed light on the evolutionary mechanisms of intracellular endosymbiosis as well as the different underlying molecular basis between organisms with parasitic behavior and symbionts.