Pre_GI: SWBIT SVG BLASTN

Query: NC_010556:141374 Exiguobacterium sibiricum 255-15, complete genome

Lineage: Exiguobacterium sibiricum; Exiguobacterium; Bacillales Family XII; Bacillales; Firmicutes; Bacteria

General Information: This organism was isolated from a 2-3 million-year permafrost core in Siberia, Russia and can survive and grow rapidly at low temperatures. Analysis of long-term survival of psychrophilic organisms such as this one may aid understanding of the potential growth of organisms in astrobiology. Exiguobacterium sibiricum is a psychrotolerant organism able to grow at temperatures that range from -6 to 40 degrees C. This organism is also able to survive repeated freeze/thaw cycles which may contribute to its ability to survive in cold environments.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007005:5825925 Pseudomonas syringae pv. syringae B728a, complete genome

Lineage: Pseudomonas syringae; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain is the causal agent of brown spot disease on beans. It was isolated from a snap bean leaflet in Wisconsin, USA. Plant pathogen. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This species includes many plant pathogens of important crops, which makes it a model organism in plant pathology. Its natural environment is on the surface of plant leaves and it can withstand various stressful conditions, like rain, wind, UV radiation and drought. It can colonize plants in a non-pathogenic state and can rapidly take advantage of changing environmental conditions to induce disease in susceptible plants by shifting gene expression patterns.