Pre_GI: SWBIT SVG BLASTN

Query: NC_010513:1443787 Xylella fastidiosa M12 chromosome, complete genome

Lineage: Xylella fastidiosa; Xylella; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: Causal agent of citrus variegated chlorosis. This organism was first identified in 1993 as the causal agent of citrus variegated chlorosis, a disease that affects varieties of sweet oranges. This disease was first noticed in Brazil in 1987, and it greatly affects commercial orchards resulting in crop devastation worldwide. Other strains of this species cause a range of diseases in mulberry, pear, almond, elm, sycamore, oak, maple, pecan and coffee which collectively result in multimillion dollar devastation of economically important plants. The bacteria are transmitted from the gut of the insect vector (sharpshooter leafhopper) to the plant xylem (water conducting system) when the insect feeds. Xylella fastidiosa is similar to Xanthomonas campestris pv. campestris in that it produces a wide variety of pathogenic factors for colonization in a host-specific manner including a large number of fimbrial and afimbrial adhesins for attachment. It does not contain a type III secretion system, but possesses genes for a type II secretion system for export of exoenzymes that degrade the plant cell wall and allow the bacterium to colonize the plant xylem. The cell produces an exopolysaccharide that is similar to the xanthan gum produced by Xanthomonas campestris pv. campestris.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004129:195347 Pseudomonas fluorescens Pf-5, complete genome

Lineage: Pseudomonas protegens Pf-5; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain can suppress the diseases caused by Rhizoctonia solani and Pythium ultimum which affect cotton plants. The production of a number of antibiotics (pyrrolnitrin, pyoluteorin, and 2,4-diacetylphloroglucinol) as well as the production of siderophores (which may affect the ability of competing organisms to obtain environmental iron) by this strain can inhibit phytopathogen growth such as the above-mentioned fungi. The genome of this organism contains a number of genes, estimated at 5.7 % of the chromosome, that encode proteins that are involved in secondary metabolism. A large number of repeat elements (REP) are also found in the genome in greater numbers than in related Pseudomonas spp.