Pre_GI: SWBIT SVG BLASTN

Query: NC_010503:327517 Ureaplasma parvum serovar 3 str. ATCC 27815 chromosome, complete

Lineage: Ureaplasma parvum; Ureaplasma; Mycoplasmataceae; Mycoplasmatales; Tenericutes; Bacteria

General Information: This organism (Ureaplasma urealyticum biovar 1) is normally found as a commensal organism in the human genital tract. As an opportunistic pathogen, it can cause a sexually-transmitted disease and is recognized as causing non-chlamydial non-gonococcal urethritis. It can also cause obstetric complications in pregnant women, severe infections in infants, as well as meningitis. Like other Mollicutes, it is a wall-less bacterium and has undergone marked genome reduction. This organism appears to generate ATP through the hydrolysis of urea by the urease enzyme.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_011149:2701916 Salmonella enterica subsp. enterica serovar Agona str. SL483,

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Salmonella enterica subsp. enterica serovar Agona causes gastroenteritis in humans and is also pathogenic to swine and other food animals. This serovar is able to contain the Salmonella genomic island 1 multidrug resistance gene cluster. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.