Pre_GI: SWBIT SVG BLASTN

Query: NC_010503:327517 Ureaplasma parvum serovar 3 str. ATCC 27815 chromosome, complete

Lineage: Ureaplasma parvum; Ureaplasma; Mycoplasmataceae; Mycoplasmatales; Tenericutes; Bacteria

General Information: This organism (Ureaplasma urealyticum biovar 1) is normally found as a commensal organism in the human genital tract. As an opportunistic pathogen, it can cause a sexually-transmitted disease and is recognized as causing non-chlamydial non-gonococcal urethritis. It can also cause obstetric complications in pregnant women, severe infections in infants, as well as meningitis. Like other Mollicutes, it is a wall-less bacterium and has undergone marked genome reduction. This organism appears to generate ATP through the hydrolysis of urea by the urease enzyme.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008261:676000 Clostridium perfringens ATCC 13124, complete genome

Lineage: Clostridium perfringens; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: The species type strain, originally isolated from a human gas gangrene patient. Causative agent of gas gangrene. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Known opportunistic toxin-producing pathogens in animals and humans. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. This organism is a causative agent of a wide spectrum of necrotic enterotoxicoses. It also causes such animal diseases as lamb dysentery, ovine enterotoxemia (struck), pulpy kidney disease in lambs and other enterotoxemias in lambs and calves. It is commonly found in the environment (soil, sewage) and in the animal and human gastrointestinal tract as a member of the normal microflora. It is a fast growing (generation time 8-10 min) anaerobic flesh-eater. Active fermentative growth is accompanied by profuse generation of molecular hydrogen and carbon dioxide. It is also oxygen tolerant which makes it an easy object to work with in laboratories. C. perfringens have been developed and the species became a model organism in clostridial genetic studies. Known isolates belong to five distinct types (A, B, C, D, and E) that are distinguished based on the specific extracellular toxins they produce. Known isolates belong to five distinct types (A, B, C, D, and E) that are distinguished based on the specific extracellular toxins they produce. All types produce the alpha toxin (phospholipase C). Type A strains that cause gas gangrene produce alpha toxin, theta (hemolysin), kappa (collagenase), mu (hyaluronidase), nu (DNAse) and neuraminidase which are all the enzymatic factors aiding the bacterium in invading and destruction of the host tissues. Type C strains produce alpha toxin, beta toxin and prefringolysin enteritis. In addition to alpha toxin, Type B strains produce beta toxin, types B and D produce the pore forming epsilon toxin and type E strains produce iota toxin.