Pre_GI: SWBIT SVG BLASTN

Query: NC_010475:2896000 Synechococcus sp. PCC 7002, complete genome

Lineage: Synechococcus; Synechococcus; Synechococcaceae; Chroococcales; Cyanobacteria; Bacteria

General Information: The cyanobacterium Synechococcus sp. PCC 7002 (formerly known as Agmenellum quadruplicatum strain PR-6) was originally isolated in 1961 by Chase Van Baalen from an onshore, marine mud flat sample derived from fish pens on Maguyes Island, La Parguera, Puerto Rico. The organism grows in brackish (euryhaline/marine) water and is unicellular but tends to form short filaments of two to four cells during exponential growth at the temperature optimum of 38 degrees C. The strain is extremely tolerant of high light intensities and has been grown at light intensities equivalent to two suns. This unique combination of physiological and genetic properties have long made this strain an important model system to studies of the oxygenic photosynthetic apparatus, the regulation of carbon and nitrogen metabolism, and other aspects of cyanobacterial physiology and metabolism.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_011959:972798 Thermomicrobium roseum DSM 5159, complete genome

Lineage: Thermomicrobium roseum; Thermomicrobium; Thermomicrobiaceae; Thermomicrobiales; Chloroflexi; Bacteria

General Information: Thermomicrobium roseum DSM 5159 was isolated from Yellowstone National Park, USA. Obligate thermophile with unusual cell wall structure. Thermomicrobium roseum is a red-pigmented, rod-shaped, Gram-negative extreme thermophile that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Analyses of environmental sequences from hot spring environments show that T.roseum displays a low quantity but ubiquitous presence in top layers of microbial mats. Few standard housekeeping genes are found on the megaplasmid, however, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, is is propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacterium's thermophilic lifestyle. Because T. roseum is a deep-branching member of this phylum, eventhough this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi.