Pre_GI: SWBIT SVG BLASTN

Query: NC_010410:513298 Acinetobacter baumannii AYE, complete genome

Lineage: Acinetobacter baumannii; Acinetobacter; Moraxellaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain is responsible for community-acquired infections and is highly resistant to antibiotics. This bacterium is commonly isolated from the hospital environment and hospitalized patients. It is an aquatic organism, and is often cultured from liquid medical samples such as respiratory secretions, wounds, and urine. Acinetobacter also colonizes irrigating solutions and intravenous solutions. Although it has low virulence, it is capable of causing infection. Most isolates recovered from patients represent colonization rather than infection. When infections do occur, they usually occur in the blood, or in organs with a high fluid content, such as the lungs or urinary tract. Infections by this organism are becoming increasingly problematic due to the high number of resistance genes found in clinical isolates. Some strains are now resistant to all known antibiotics. Most of these genes appear to have been transferred horizontally from other organisms.

No Graph yet!

Subject: NC_014802:27857 Campylobacter jejuni subsp. jejuni ICDCCJ07001 chromosome, complete

Lineage: Campylobacter jejuni; Campylobacter; Campylobacteraceae; Campylobacterales; Proteobacteria; Bacteria

General Information: Gram-negative, microaerophilic, flagellate, spiral bacterium, Campylobacter species are the leading cause of food-borne gastroenteritis in developed countries. Infection with C. jejuni is the most frequent antecedent to a form of neuromuscular paralysis known as Guillain-Barre syndrome (GBS). Strain ICDCCJ07001 was isolated following a GBS outbreak in Shuangyang, a town in northern China in 2007, from a severely affected 15 year-old girl GBS patient who had been on a ventilator for 180 days. Her clinical symptoms were motor axonal neuropathy. This organism is the leading cause of bacterial food poisoning (campylobacteriosis) in the world, and is more prevalent than Salmonella enteritis (salmonellosis). Found throughout nature, it can colonize the intestines of both mammals and birds, and transmission to humans occurs via contaminated food products. This organism can invade the epithelial layer by first attaching to epithelial cells, then penetrating through them. Systemic infections can also occur causing more severe illnesses.