Pre_GI: SWBIT SVG BLASTN

Query: NC_010410:513298 Acinetobacter baumannii AYE, complete genome

Lineage: Acinetobacter baumannii; Acinetobacter; Moraxellaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain is responsible for community-acquired infections and is highly resistant to antibiotics. This bacterium is commonly isolated from the hospital environment and hospitalized patients. It is an aquatic organism, and is often cultured from liquid medical samples such as respiratory secretions, wounds, and urine. Acinetobacter also colonizes irrigating solutions and intravenous solutions. Although it has low virulence, it is capable of causing infection. Most isolates recovered from patients represent colonization rather than infection. When infections do occur, they usually occur in the blood, or in organs with a high fluid content, such as the lungs or urinary tract. Infections by this organism are becoming increasingly problematic due to the high number of resistance genes found in clinical isolates. Some strains are now resistant to all known antibiotics. Most of these genes appear to have been transferred horizontally from other organisms.

No Graph yet!

Subject: NC_006677:215466 Gluconobacter oxydans 621H, complete genome

Lineage: Gluconobacter oxydans; Gluconobacter; Acetobacteraceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Industrially useful bacterium. Gluconobacter oxydans is a member of the Acetobacteraceae family within the alpha proteobacteria and can be isolated from flowers, fruits, and fermented beverages. This organism uses membrane-associated dehydrogenases to incompletely oxidize a wide variety of carbohydrates and alcohols. Oxidation occurs in the periplasm with the products being released into the medium via outer membrane porins and the electrons entering the electron transport chain. Able to oxidize large amounts of substrates, making it useful for industrial purposes. Among other applications, it has been used to produce 2-ketogluconic for iso-ascorbic acid production, 5-ketogluconic acid from glucose for tartaric acid production, and L-sorbose from sorbitol for vitamin C synthesis.