Pre_GI: SWBIT SVG BLASTN

Query: NC_010337:2848360 Heliobacterium modesticaldum Ice1, complete genome

Lineage: Heliobacterium modesticaldum; Heliobacterium; Heliobacteriaceae; Clostridiales; Firmicutes; Bacteria

General Information: Heliobacterium modesticaldum strain Ice1, the type strain of this species, was isolated from Icelandic hot spring volcanic soils. It grows optimally above 50 degrees Celsius, grows best photoheterotrophically, but can grow in the dark chemotrophically on pyruvate. Phototrophic thermophile. This organism is an anoxygenic phototroph isolated from hot spring microbial mats and volcanic soil. Cell wall structure, the ability to form endospores, and 16S ribosomal RNA analysis place Heliobacterium modesticaldum in a family of phototrophic bacteria related to the Clostridia. Heliobacterium modesticaldum is able to fix nitrogen and may contribute significantly to the nitrogen availability in microbial mats.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_002936:67896 Dehalococcoides ethenogenes 195, complete genome

Lineage: Dehalococcoides mccartyi; Dehalococcoides; Dehalococcoidaceae; Dehalococcoidales; Chloroflexi; Bacteria

General Information: Dechlorinates tetrachloroethene. This organism was isolated from environments contaminated with organic chlorinated chemicals such as tetrachloroethene (PCE) and trichloroethane (TCE), common contaminants in the anaerobic subsurface. There are at least 15 organisms from different metabolic groups, halorespirators, acetogens, methanogens and facultative anaerobes, that are able to metabolize PCE. Some of these organisms couple dehalogenation to energy conservation and utilize PCE as the only source of energy while others dehalogenate tetrachloroethene fortuitously. This non-methanogenic, non-acetogenic culture is able to grow with hydrogen as the electron donor, indicating that hydrogen/PCE serves as an electron donor/acceptor for energy conservation and growth. This organism can only grow anaerobically in the presence of hydrogen as an electron donor and chlorinated compounds as electron acceptors. Dehalococcoides ethenogenes is typically found at sites contaminated with chlorinated solvents, and have been independently isolated in dozens of sites across the USA.