Pre_GI: SWBIT SVG BLASTN

Query: NC_010336:213148 Francisella philomiragia subsp. philomiragia ATCC 25017, complete

Lineage: Francisella philomiragia; Francisella; Francisellaceae; Thiotrichales; Proteobacteria; Bacteria

General Information: Francisella philomiragia subsp. philomiragia ATCC 25017 was isolated from water in the Bear River Refuge in Utah, USA. Causes disease in humans and fish. Francisella philomiragia, formerly Yersinia philomiragia, has been isolated from water, muskrats, fish and humans. F. philomiragia is able to cause an often fatal bacteremia in people with chronic granulomatous disease. This supspecies can also cause pneumonia in near-drowning victims.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_002528:404545 Buchnera aphidicola str. APS (Acyrthosiphon pisum), complete

Lineage: Buchnera aphidicola; Buchnera; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is found in the pea aphid, Acyrthosiphon pisum.Aphid endosymbiont. Almost all aphids contain maternally transmitted bacteriocyte cells, which themselves contain bacteria called Buchnera. The aphids live on a restricted diet (plant sap), rich in carbohydrates, but poor in nitrogenous or other essential compounds. It is believed that the Buchnera provide the essential nutrients the host lacks. Besides a nutritional co-dependence, due to a co-existence of millions of years, Buchnera have lost the ability to produce cell surface components such as lipopolysaccharides. This makes for an obligate endosymbiont relationship between host and Buchnera. Buchnera are prokaryotic cells which belong to the gamma-Proteobacteria, closely related to the Enterobacteriaceae family. Phylogenetic studies using 16S rRNA indicate that the symbiotic relationship was established around 200-250 million years ago. Since Buchnera are closely related to Escherichia coli and Haemophilus influenzae, comparative genomic studies can shed light on the evolutionary mechanisms of intracellular endosymbiosis as well as the different underlying molecular basis between organisms with parasitic behavior and symbionts.