Pre_GI: SWBIT SVG BLASTN

Query: NC_010163:63209 Acholeplasma laidlawii PG-8A chromosome, complete genome

Lineage: Acholeplasma laidlawii; Acholeplasma; Acholeplasmataceae; Acholeplasmatales; Tenericutes; Bacteria

General Information: Acholeplasma species are widely distributed in the nature and can be detected and isolated from different plant, avian, and mammalian sources. Acholeplasma laidlawii is found in soil, compost, wastewaters, cell cultures as well as in human tissues and in many animal species (birds, bovine, goat, equine, ovine, porcine, feline, rodent, primates). Acholeplasma laidlawii is capable of synthesizing glucose using a pyrophosphate-dependent 6-phosphofructokinase which has also been detected in other acholeplasmas (a good example of flexible metabolism). Additionally, Acholeplasma laidlawii and phytoplasmas are the only mollicutes known to use the universal genetic code, in which UGA is a stop codon.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_015690:8019859 Paenibacillus mucilaginosus KNP414 chromosome, complete genome

Lineage: Paenibacillus mucilaginosus; Paenibacillus; Paenibacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Paenibacillus mucilaginosus is critical silicate bacteria in the biogeochemical cycling of potassium, phosphorus, and other soil elements, and is widely used in agriculture, bioleaching, and wastewater treatment. P. mucilaginosus is able to degrade insoluble soil minerals with the release of nutritional ions and fix nitrogen, and thus it has been successfully used as a biofertilizer since the 1990s. The exocellular polysaccharides produced by P. mucilaginosus is also an effective bioflocculant, and thus plays a potential role in the treatment of wastewater and biohydrometallurgy.