Pre_GI: SWBIT SVG BLASTN

Query: NC_010163:1193237 Acholeplasma laidlawii PG-8A chromosome, complete genome

Lineage: Acholeplasma laidlawii; Acholeplasma; Acholeplasmataceae; Acholeplasmatales; Tenericutes; Bacteria

General Information: Acholeplasma species are widely distributed in the nature and can be detected and isolated from different plant, avian, and mammalian sources. Acholeplasma laidlawii is found in soil, compost, wastewaters, cell cultures as well as in human tissues and in many animal species (birds, bovine, goat, equine, ovine, porcine, feline, rodent, primates). Acholeplasma laidlawii is capable of synthesizing glucose using a pyrophosphate-dependent 6-phosphofructokinase which has also been detected in other acholeplasmas (a good example of flexible metabolism). Additionally, Acholeplasma laidlawii and phytoplasmas are the only mollicutes known to use the universal genetic code, in which UGA is a stop codon.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_005303:553500 Onion yellows phytoplasma OY-M, complete genome

Lineage: Onion yellows phytoplasma; Phytoplasma; Acholeplasmataceae; Acholeplasmatales; Tenericutes; Bacteria

General Information: This strain (OY-M) is derived from a wild-type disease-causing strain (OY-W; onions yellow disease) which was isolated in Saga Prefecture, Japan, in 1982, and shows mild symptoms and does not cause stunting nor phloem hyperplasia (excessive increase in number of cells). Plant pathogenic bacterium. Phytoplasmas inhabit phloem (food-conducting vascular tissue) sieve elements of plants where they cause a variety of diseases. There is great interest in sequencing these organisms since they are currently unculturable and examination of the genome may lead to methods to deal with the diseases they cause including the development of antimicrobial agents. There is great interest in sequencing these organisms since they are currently unculturable and examination of the genome may lead to methods to deal with the diseases they cause including the development of antimicrobial agents.