Pre_GI: SWBIT SVG BLASTN

Query: NC_010163:1193237 Acholeplasma laidlawii PG-8A chromosome, complete genome

Lineage: Acholeplasma laidlawii; Acholeplasma; Acholeplasmataceae; Acholeplasmatales; Tenericutes; Bacteria

General Information: Acholeplasma species are widely distributed in the nature and can be detected and isolated from different plant, avian, and mammalian sources. Acholeplasma laidlawii is found in soil, compost, wastewaters, cell cultures as well as in human tissues and in many animal species (birds, bovine, goat, equine, ovine, porcine, feline, rodent, primates). Acholeplasma laidlawii is capable of synthesizing glucose using a pyrophosphate-dependent 6-phosphofructokinase which has also been detected in other acholeplasmas (a good example of flexible metabolism). Additionally, Acholeplasma laidlawii and phytoplasmas are the only mollicutes known to use the universal genetic code, in which UGA is a stop codon.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_003047:2798367 Sinorhizobium meliloti 1021, complete genome

Lineage: Sinorhizobium meliloti; Sinorhizobium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Streptomycin resistant derivative of strain 2011. Plant symbiotic bacterium. This organism, much like other Rhizobia, forms a symbiotic relationship with a leguminous plant, in this case the alfalfa plant (Medicago sativa). Expression of nodulation genes results in production of a nodulation signal which the plant cell recognizes inducing root nodule formation. The plant cell provides carbon compounds for the bacterium to grow on.