Pre_GI: SWBIT SVG BLASTN

Query: NC_010163:63209 Acholeplasma laidlawii PG-8A chromosome, complete genome

Lineage: Acholeplasma laidlawii; Acholeplasma; Acholeplasmataceae; Acholeplasmatales; Tenericutes; Bacteria

General Information: Acholeplasma species are widely distributed in the nature and can be detected and isolated from different plant, avian, and mammalian sources. Acholeplasma laidlawii is found in soil, compost, wastewaters, cell cultures as well as in human tissues and in many animal species (birds, bovine, goat, equine, ovine, porcine, feline, rodent, primates). Acholeplasma laidlawii is capable of synthesizing glucose using a pyrophosphate-dependent 6-phosphofructokinase which has also been detected in other acholeplasmas (a good example of flexible metabolism). Additionally, Acholeplasma laidlawii and phytoplasmas are the only mollicutes known to use the universal genetic code, in which UGA is a stop codon.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_014833:406889 Ruminococcus albus 7 chromosome, complete genome

Lineage: Ruminococcus albus; Ruminococcus; Ruminococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: Environment: Host; Temp: Mesophile; Temp: 40C. The bacterium requires phenylacetic and phenylpropionic acids for maximal growth. The organism produces cellulosomes at the cell surface that are multimeric protein complexes that contain scaffolding proteins and degradative enzymes. Understanding the metabolism of plant polysaccharides may enable scientists to improve the productivity of ruminant organisms such as cattle