Pre_GI: SWBIT SVG BLASTN

Query: NC_010163:63209 Acholeplasma laidlawii PG-8A chromosome, complete genome

Lineage: Acholeplasma laidlawii; Acholeplasma; Acholeplasmataceae; Acholeplasmatales; Tenericutes; Bacteria

General Information: Acholeplasma species are widely distributed in the nature and can be detected and isolated from different plant, avian, and mammalian sources. Acholeplasma laidlawii is found in soil, compost, wastewaters, cell cultures as well as in human tissues and in many animal species (birds, bovine, goat, equine, ovine, porcine, feline, rodent, primates). Acholeplasma laidlawii is capable of synthesizing glucose using a pyrophosphate-dependent 6-phosphofructokinase which has also been detected in other acholeplasmas (a good example of flexible metabolism). Additionally, Acholeplasma laidlawii and phytoplasmas are the only mollicutes known to use the universal genetic code, in which UGA is a stop codon.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_012846:1888000 Bartonella grahamii as4aup, complete genome

Lineage: Bartonella grahamii; Bartonella; Bartonellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Bartonella grahamii (strain as4aup) is Gram-negative bacterium isolated from a wood mouse (Apodemus sylvaticus) in central Sweden. Bartonella are human and animal pathogens which infect erythrocytes and can cause angiogenic lesions. These organisms cause diseases in humans such as Oroya fever, Trench fever, endocarditis, and Cat Scratch disease. Transmission of this organism is via the bite of a blood-sucking arthropod. Bartonella grahamii can be isolated from the blood of rodents and is found world wide. Fleas may be the transmission vector for Bartonella grahamii to other rodents. Human disease appears to be rare and associated with an immunocompromised state.