Pre_GI: SWBIT SVG BLASTN

Query: NC_010161:1844452 Bartonella tribocorum CIP 105476, complete genome

Lineage: Bartonella tribocorum; Bartonella; Bartonellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This organism was isolated from the blood of wild rats and from fleas obtained from wild rats. Transmission of these organisms is often through an insect vector. Once in a host, this intracellular pathogen is internalized by an actin-dependent mechanism, and primarily targets endothelial cells, although other cells can be infected. The proliferation of the vascular endothelium (bacillary angiomatosis) is characterisitic of Bartonella infection and results in multiplication of the bacterium's host cells. Infected macrophages are stimulated to release vascular endothelial growth factor (VEGF) and interleukin 1 beta, both of which promote angiogenesis. Endothelial cells are also stimulated to grow and divide by direct contact with bacterial cells. In addition, programmed cell death (apoptosis) of endothelial cells is inhibited, combatting a common mechanism eukaryotic cells use to deal with bacterial infection. Other pathogenicity factors include pili and outer membrane adhesins for attachment to host cells. This organism is genetically related to Bartonella elizabethae which was isolated from a case of endocarditis in a human.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_013714:2350749 Bifidobacterium dentium Bd1, complete genome

Lineage: Bifidobacterium dentium; Bifidobacterium; Bifidobacteriaceae; Bifidobacteriales; Actinobacteria; Bacteria

General Information: Common oral and gut bacterium. Representatives of this genus naturally colonize the human gastrointestinal tract (GIT) and are important for establishing and maintaining homeostasis of the intestinal ecosystem to allow for normal digestion. Their presence has been associated with beneficial health effects, such as prevention of diarrhea, amelioration of lactose intolerance, or immunomodulation. The stabilizing effect on GIT microflora is attributed to the capacity of bifidobacteria to produce bacteriocins, which are bacteriostatic agents with a broad spectrum of action, and to their pH-reducing activity. Most of the ~30 known species of bifidobacteria have been isolated from the mammalian GIT, and some from the vaginal and oral cavity. All are obligate anaerobes belonging to the Actinomycetales, branch of Gram-positive bacteria with high GC content that also includes Corynebacteria, Mycobacteria, and Streptomycetes. Bifidobacterium dentium species represents over forty strains which were isolated from human dental caries and human feces.