Pre_GI: SWBIT SVG BLASTN

Query: NC_010117:1461502 Coxiella burnetii RSA 331, complete genome

Lineage: Coxiella burnetii; Coxiella; Coxiellaceae; Legionellales; Proteobacteria; Bacteria

General Information: This strain (RSA 331; Hentzerling) is associated with acute Q fever and was isolated from the blood of an infected patient in northern Italy in 1945. This organism is widely distributed in nature and can cause infections in reptiles, birds, and mammals. It causes Q fever, or 'query' fever, an atypical pneumonia first associated with abattoir workers in Australia. Transmission may be through insect vectors such as ticks that have bitten an infected wild or domesticated animal, or through an aerosol produced by domesticated animals such as sheep or cattle. The presence of a plasmid is believed to be associated with virulence and pathogenicity, however C. burnetii isolates containing plasmid QpDG are avirulent in guinea pigs and plasmidless isolates have been associated with endocarditis in humans. Coxiella burnetii has a developmental life cycle, and can grow vegetatively through binary fission, or asymmetrically and produce a spore-like cell. The spore-like cell may enable the organism to exist extracellularly for small amounts of time. This bacterium is an obligate intracellular pathogen. It is endocytosed by a host cell, a macrophage for example, and lives and replicates inside the phagolysozome, a unique property of this organism. The genome encodes proteins that have a higher than average pI, which may enable adaptation to the acidic environment of the phagolysozome. The chromosome also contains genes for a number of detoxification and stress response proteins such as dismutases that allow growth in the oxidative environment. The type IV system is similar to the one found in Legionella, which may be important for intracellular survival. This organism produces numerous ankyrin-repeat proteins that may be involved in interactions with the host cell. The genome has 83 pseudogenes, which may be a result of the typical genome-wide degradation observed with other intracellular organisms and also has a group I intron in the 23S ribosomal RNA gene.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010161:1844452 Bartonella tribocorum CIP 105476, complete genome

Lineage: Bartonella tribocorum; Bartonella; Bartonellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This organism was isolated from the blood of wild rats and from fleas obtained from wild rats. Transmission of these organisms is often through an insect vector. Once in a host, this intracellular pathogen is internalized by an actin-dependent mechanism, and primarily targets endothelial cells, although other cells can be infected. The proliferation of the vascular endothelium (bacillary angiomatosis) is characterisitic of Bartonella infection and results in multiplication of the bacterium's host cells. Infected macrophages are stimulated to release vascular endothelial growth factor (VEGF) and interleukin 1 beta, both of which promote angiogenesis. Endothelial cells are also stimulated to grow and divide by direct contact with bacterial cells. In addition, programmed cell death (apoptosis) of endothelial cells is inhibited, combatting a common mechanism eukaryotic cells use to deal with bacterial infection. Other pathogenicity factors include pili and outer membrane adhesins for attachment to host cells. This organism is genetically related to Bartonella elizabethae which was isolated from a case of endocarditis in a human.