Pre_GI: SWBIT SVG BLASTN

Query: NC_010079:15441 Staphylococcus aureus subsp. aureus USA300_TCH1516, complete

Lineage: Staphylococcus aureus; Staphylococcus; Staphylococcaceae; Bacillales; Firmicutes; Bacteria

General Information: USA300, a methicillin resistant strain of Staphylococcus aureus, has been implicated in epidemiologically unassociated outbreaks of skin and soft tissue infections among healthy individuals in at least 21 U.S. states, Canada and Europe. USA300 is also noted for its strong association with unusually invasive disease, including severe septicemia, necrotizing pneumonia and necrotizing fasciitis. Causes skin infections. Staphylcocci are generally found inhabiting the skin and mucous membranes of mammals and birds. Some members of this genus can be found as human commensals and these are generally believed to have the greatest pathogenic potential in opportunistic infections. This organism is a major cause of nosocomial (hospital-acquired) and community-acquired infections. S. aureus continues to be a major cause of mortality and is responsible for a variety of infections including, boils, furuncles, styes, impetigo and other superficial skin infections in humans. Also known to cause more serious infections particularly in the chronically ill or immunocompromised. The ability to cause invasive disease is associated with persistance in the nasal cavity of a host.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010337:2793667 Heliobacterium modesticaldum Ice1, complete genome

Lineage: Heliobacterium modesticaldum; Heliobacterium; Heliobacteriaceae; Clostridiales; Firmicutes; Bacteria

General Information: Heliobacterium modesticaldum strain Ice1, the type strain of this species, was isolated from Icelandic hot spring volcanic soils. It grows optimally above 50 degrees Celsius, grows best photoheterotrophically, but can grow in the dark chemotrophically on pyruvate. Phototrophic thermophile. This organism is an anoxygenic phototroph isolated from hot spring microbial mats and volcanic soil. Cell wall structure, the ability to form endospores, and 16S ribosomal RNA analysis place Heliobacterium modesticaldum in a family of phototrophic bacteria related to the Clostridia. Heliobacterium modesticaldum is able to fix nitrogen and may contribute significantly to the nitrogen availability in microbial mats.