Pre_GI: SWBIT SVG BLASTN

Query: NC_010067:4149298 Salmonella enterica subsp. arizonae serovar 62:z4,z23:--, complete

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This subspecies (IIIa) is usually found associated with reptiles, although contact with infected animals can result in the spread of the organism to humans or animals such as turkeys. This strain was originally isolated from a cornsnake in 1986 in Oregon, USA. Causes enteric infections. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007778:4814000 Rhodopseudomonas palustris HaA2, complete genome

Lineage: Rhodopseudomonas palustris; Rhodopseudomonas; Bradyrhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Four different strains were isolated from 2 sites, one pristine and one polluted. Environmental bacterium with potential use in bioremediation. This organism has a diverse metabolism and is capable of growth using light, inorganic, or organic compounds as energy sources and carbon dioxide or organic compounds as carbon sources. Commonly found in soil and water environments this bacterium is also capable of degrading a wide range of toxic organic compounds, and may be of use in bioremediation of polluted sites. The bacterium undergoes differentiation to produce a stalked nonmotile cell and a motile flagellated cell. In the presence of light, this bacterium produces a number of intracellular membranous vesicles to house the photosynthetic reaction centers.