Query: NC_009802:1827138 Campylobacter concisus 13826, complete genome
Lineage: Campylobacter concisus; Campylobacter; Campylobacteraceae; Campylobacterales; Proteobacteria; Bacteria
General Information: Campylobacter concisus 13826 is a gastrointestinal clinical isolate. Members of this genus are one of the most common causes of bacterial gastroenteritis (campylobacteriosis). Usually the symptoms are abdominal pain, fever, diarrhea, and cramps, but the illness can sometimes be fatal and some infected individuals develop a syndrome (Guillain-Barre) in which the nerves connecting the spinal cord to the brain are damaged. C. jejuni is the main cause of campylobacteriosis, but other species can also cause infection, including C. coli, C. upsaliensis, and C. concisus. Campylobacter concisus was first isolated from the human oral cavity in cases of gingivitis; however the role it plays in periodontal disease is unclear. This organism has also been isolated from children and immunocompromised patients with gastrointestinal disease. C. concisus is a genetically diverse species, comprised of at least four genomospecies.
Subject: NC_000917:1778173 Archaeoglobus fulgidus DSM 4304, complete genome
Lineage: Archaeoglobus fulgidus; Archaeoglobus; Archaeoglobaceae; Archaeoglobales; Euryarchaeota; Archaea
General Information: This is the type strain (DSM 4304) of the Archaeoglobales, and was isolated from a geothermally heated sea floor at Vulcano Island, Italy. Doubling time is four hours under optimal conditions. The organism is an autotrophic or organotrophic sulfate/sulfite respirer. An additional distinguishing characteristic is blue-green fluorescence at 420 nm. This bacterium is the first sulfur-metabolizing organism to have its genome sequence determined. Growth by sulfate reduction is restricted to relatively few groups of prokaryotes; all but one of these are Eubacteria, the exception being the archaeal sulfate reducers in the Archaeoglobales. These organisms are unique in that they are only distantly related to other bacterial sulfate reducers, and because they can grow at extremely high temperatures. The known Archaeoglobales are strict anaerobes, most of which are hyperthermophilic marine sulfate reducers found in hydrothermal environments. High-temperature sulfate reduction by Archaeoglobus species contributes to deep subsurface oil-well 'souring' by iron sulfide, which causes corrosion of iron and steel in oil-and gas-processing systems.