Pre_GI: SWBIT SVG BLASTN

Query: NC_009749:1699152 Francisella tularensis subsp. holarctica FTA, complete genome

Lineage: Francisella tularensis; Francisella; Francisellaceae; Thiotrichales; Proteobacteria; Bacteria

General Information: Isolated from an immunocompetent 56-year old male with bacteremic pneumonia in France. Francisella tularensis is a non-motile, aerobic, rod-shaped Gram-negative bacterium and is the causative agent of tularemia. This organism was first identified by Edward Francis as the causative agent of a plague-like illness that affected squirrels in Tulare county in California in the early part of the 20th century. The organism now bears his name. The disease, which has been noted throughout recorded history, can be transmitted to humans by infected ticks or deerflies, infected meat, or by aerosol, and thus is a potential bioterrorism agent. This organism has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008358:2808299 Hyphomonas neptunium ATCC 15444, complete genome

Lineage: Hyphomonas neptunium; Hyphomonas; Hyphomonadaceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: Marine member of dimorphic prosthecate bacteria. This organism is also known as Hyphomicrobium neptunium. It has a biphasic life style, which consists of a motile phase of flagellated swarmer cells, and a cessile phase in which a long prosthecate is produced at one end of the bacteria through which budding cells emerge. Newly budded cells in turn produce flagella and go through a motile phase and the cycle continues. These organisms can colonize the surfaces of marine environments which enables additional species to colonize at later stages. This organism may be of use in treatment of water as they attach to a solid surface and are capable of degradation of a number of pollutants including aromatic hydrocarbons, dimethyl sulfoxide and methyl chloride.